Derek Snider at dual beam stage with star wars R2D2 toy

Semiconductor and Electronic Failure Analysis Blog

Welcome to the Semiconductor and Electronics Failure Analysis Blog, and discussion forum for all things related to electrical, integrated circuit (IC) board and electronics failure analysis.  Please subscribed to our feed and feel free to leave a comment or question. Thanks for visiting.

What is Scanning Acoustic Microscopy (SAM)? How's it Used for Electronic Failure Analysis?

C-scan of packaged integrated circuit showing die surface delamination

Scanning Acoustic Microscopy (SAM) is a fast, non-destructive investigative technique frequently used in electronic failure analysis.

SAM uses ultrasound waves to image interfaces and detect possible defects within optically opaque structures and components such as chip capacitors, chip resistors, circuit board traces, discrete semiconductor devices, integrated circuits (ICs), and other electronic components.

SAM is frequently used in failure analysis to evaluate die attach integrity, heat spreader adhesion, and solder quality.

Just as medical ultrasound equipment is used to examine bodily structures that are normally hidden underneath skin, SAM uses high frequency sound waves to image subsurface features of electronic components. By studying the characteristics of these ultrasonic sound waves after they interact with a sample, the failure analyst can detect physical anomalies ranging from air gaps or delamination in plastic encapsulant material to cracked ceramic dielectrics in a capacitor. Indeed, by using frequencies above 100MHz, defects as small as a crack in the die bumps of a flip-chip BGA can be identified.

To create and analyze these ultrasonic waves, piezoelectric transducers are used. Piezoelectrics are crystalline materials with a unique property; when an external voltage is applied to a piezoelectric, the material will deform. Similarly, when a piezoelectric material is subjected to a physical stress, an electrical charge is generated. In a Scanning Acoustic Microscope, voltage is applied to the piezoelectric transducer, which emits an ultrasonic wave due to the deformation of the crystal; this ultrasound interacts with the device under test, and is then recaptured by the same transducer (or, depending on operating mode, by a secondary transducer) and converted into an electrical charge, which can then be processed to generate an image.

The frequencies used for Scanning Acoustic Microscopy are more than two orders of magnitude higher than the highest frequency of sound that can be detected by the average human ear. Since these ultra-high frequency sound waves cannot travel through air for any appreciable distance, it is necessary to use a transmission medium like water to facilitate acoustic microscopy. The sample and piezoelectric transducer must be immersed in water in order to allow good transmission of the ultrasound waves; this means, of course, that the sample must be able to survive underwater for the duration of the scan.

There are several different analysis techniques that can be used with a Scanning Acoustic Microscope, each providing the electronic failure analyst with different information about the sample. An A-Scan can be used to examine the amplitude and phase of a reflected or transmitted ultrasonic pulse; with this information, an analyst can quickly identify the physical interfaces within a device and determine whether or not delamination exists between layers of a structure. The B-Scan uses the reflected ultrasonic waves to construct a “virtual cross-section” of the sample under test, allowing the analyst to indirectly view the device's internal construction, while the C-Scan allows the analyst to focus on a single interface, using reflected or transmitted ultrasound to create an image that can be studied to look for any packaging defects.

By using the appropriate mode of Scanning Acoustic Microscopy for electronic failure analysis, our analysts can get an accurate picture of the construction and integrity of a component. With this picture in hand, our engineers can provide the customer with valuable data and insight which can be used to better understand and correct the problem causing the failure.

Read 5804 times

Search Our Site

Contact Us

Please type your full name.
Please type your full name.
Invalid phone format. Please use xx-xxx-xxxx
Invalid email address.
Invalid Input
Invalid Input

ISO-9001:2007 Certified

Follow Our Feed

Enter your email address:

Delivered by FeedBurner

Login

 

Need to Determine the Root Cause of a Failure in an Electronic Component?  We get back to you with a quote in 24 hours once we have your information.

Request Failure Analysis Quote